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ABSTRACT: Inflation creates both scalar (density) and tensor (gravity 

wave) metric perturbations. We find that the tensor mode contribution to 

the CMB anisotropy on large-angular scales can only exceed that of the scalar 

mode in models where the spectrum of perturbations deviates significantly 

from scale invariance (e.g., extended and power-law inflation models and 

extreme versions of chaotic inflation). If the tensor mode dominates at large- 

angular scales, then the value of fITIT predicted on 1” is less than if the 

scalar mode dominates, and, for cold dark matter models, b > 1 can be made 

consistent with the COBE DMR results. 
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The recent COBE DMR [l] measurements of large-angular-scale anisotropy 

in the cosmic microwave background (CMB) p rovide important experimental 

support for the hot big bang model. Perhaps the most striking conclusion 

to be drawn from the COBE DMR data is that it is consistent with a scale- 

invariant spectrum of primordial density (scalar) perturbations extending 

well outside the horizon at the epoch of last scattering. 

A scale-invariant spectrum is consistent with inflation, which predicts 

perturbations generated by quantum fluctuations [Z], and also with models 

that generate perturbations by classical effects, such as theories with cosmic 

strings, textures, global monopoles, and non-topological excitations. Infla- 

tion also produces a spectrum of gravity waves (tensor metric fluctuations) 

with wavelengths extending beyond the horizon, providing a possible means 

for distinguishing it from the other scenarios. Recently it was even spec- 

ulated that the anisotropy detected by the COBE DMR might be largely 

due to inflation-produced tensor rather than scalar perturbations [3]. In this 

Letter, we show that tensor dominance of the CMB quadrupole anisotropy 

is indeed possible for a class of inflationary models. We find that the ratio 

of tensor to scalar contributions is directly tied to the rate of inflationary 

expansion and the “tilt” of the spectrum of density perturbations away from 

scale invariance. Models that permit tensor dominance include extended in- 

flation, power-law inflation and extreme versions of chaotic inflation. While 

the COBE DMR results alone cannot distinguish tensor from scalar pertur- 

bations, we show how additional measurements on small-angular scales may 

distinguish the two. We also discuss the implications for large-scale structure. 

CMB temperature anisotropies on large-angular scales (2 1”) are pro- 

duced by metric fluctuations through the Sachs-Wolfe effect [4]. These tem- 
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perature fluctuations can be decomposed into spherical-harmonic amplitudes; 

for scale-invariant scalar-mode fluctuations, the quadrupole is given by [5] 

s s (a;), G ( y2 [a*$) = &$ = G&, (1) 
m=-2 

where H is the Hubble parameter, 4 is the scalar field that rolls during 

inflation, V(q5) is its potential, mp, = 1.22 x 1Org GeV is the Planck mass, 

and the final expression follows from the slow-roll equation of motion, 3H$ = 

-V’. The rhs is to be evaluated N - 60 e-foldings before the end of inflation, 

when fluctuations on CMB length scales crossed outside the horizon [6]. The 

corresponding formula for tensor fluctuations is [7]: 

T z (a;), = 7.745, 

The ratio of tensor to scalar quadrupole anisotropies is, therefore, T f if22 y 0.28 - 
s (4)s c V’ 2 mPl 

V )I N-60 

Note that the coefficients in Eqs. (1, 2) were derived assuming strict scale 

invariance. Since we will find below that models with T/S 2 1 deviate from 

scale invariance, we have numerically computed the coefficients in Eqs. (1, 2) 

for “tilted” spectra and find that the numerical coefficient in Eq. (3) changes 

very little (5 10%) for the tilts consistent with the COBE DMR results. 

Extended [8] and power-law [Q] inflation models can be described in terms of 

a potential of the form, V(4) = Vo exp(-a4/mpr), where p is constant or 

slowly time-dependent. In extended inflation C$ is related to a field that is 

coupled to the scalar curvature (e.g., a dilaton or Brans-Dicke field), which 

leads to a modification of Einstein gravity. The modified gravity action can 

be re-expressed via a Weyl transformation as the usual Einstein action plus 
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a minimally coupled scalar field (4) with an exponential potential. In the 

simplest example of extended inflation [8], p = dw, where w is 

the Brans-Dicke parameter. For an exponential potential, Eq. (3) implies: 

; x 0.28p2 = & 

The ratio T/S 2 1 for w s 26 (p 2 1.9). Interestingly, w 5 26 is almost 

precisely what is required to avoid unacceptable inhomogeneities from big 

bubbles in extended inflation [lo]. (Though w 5 26 is inconsistent with 

solar-system limits for Brans-Dicke theory, these constraints are evaded by 

giving the Brans-Dicke field a mass.) 

Chaotic inflation models [ll] typically invoke a potential of the form, V(d) = 

A&‘, where 4 >> mpr initially, and rolls to 4 = 0. The ratio of tensor to 

scalar anisotropies can be expressed in terms of dN, the value of the scalar 

field N - 60 e-foldings before the end of inflation. Using the relation, 

N(O)=~~~Hd,=~~~~~d~=~oz-p 
p mp,s 12’ (5) 

where &&, = p2mp1*/48n, we find that [12]: 

T P P 1 1 
-1 

-x17.41+72o ’ S 

where we have set N = 60. For the chaotic-inflation models usually discussed, 

p = 2 and 4, the scalar mode dominates: T/S = 0.11 and 0.23; however, for 

extreme models, p 2 18, the tensor mode could dominate. 

New inflation models [13] entail slow-roll from 4 x 0 to 4 = ,y down flat 

potentials of the Coleman-Weinberg form, V(4) = Bu4/2+B@ [ln($2/02)- 

i], where B N lo-r5 for density perturbations of an acceptable size. In new 

inflation T/S also depends upon $N; paralleling the previous analysis, 

N(4) = -$ L’; $4 x 
u4 

cm 21 ln(4i/u2)1 &mp? 
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: = ,;;;N’i”dz), m”,, ( > 
4 - (8) 

Scalar dominates tensor for (J 5 10m pi, and, naively, it would appear that 

T/S can be made greater than unity for u 2 10mpl. However, one finds 

that 46s is very close to u for cr 2 10m pi, violating the implicit assumption, 

46s << u. That is, for u >> mpi, 4 rolls down the steeper (harmonic) part of 

the potential close to the minimum, so that V(4) N 4B02(# - c)~, just as in 

chaotic inflation with p = 2. In this case, the tensor mode does not dominate 

(T/S N 0.11) [14]. 

We will now show that T/S cannot be arbitrarily large by deriving model- 

independent relations between T/S, the rate of inflation, and the tilt of the 

density perturbation spectrum away from scale-invariance [16]. The ratio of 

tensor to scalar perturbations is controlled by the steepness of the potential, 

V’mpJV; cf. Eq. (3). During inflation, this quantity also determines the 

ratio of the kinetic to potential energy of the scalar field [15], !&2/V N 

(V’m~,/V)~/48n, which in turn determines the effective equation of state 

(p = yp) and the evolution of the cosmic-scale factor (R 0: t”): y = [iJ2 - 

V]/[$$2 + V] and m = 2/3(1 + y) (during inflation y and m can vary). It 

is simple to show that the tensor perturbations are characterized by a power 

spectrum ]6:]” 0: k”-’ and the scalar (density) perturbations by ]&?]’ m k”, 

where n = (m - 3)/(m - 1). In the limit of exponential inflation, id2;?/V -+ 0, 

m + 00, the tensor and scalar perturbations are scale invariant (n = 1) [17]. 

The relationships between $$*,‘lV and m, m and n, together with Eq. 

(3), allow us to express the expansion-rate index m and the power-spectrum 

index n (for N N 60) in terms of T/S: 

3 (T/S) 
n=1-2& (T/S) =l-7 s l T (9) 

0 
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(We remind the reader that the numerical coefficients here depend upon 

that in Eq. (3), which depends weakly on the ratio T/S for n 2 0.5.) If the 

tensor mode is to dominate-i.e., T/S 2 l-then m must be less than about 

14 and n must be less than about 0.85. The converse is also true: In models 

where the expansion is exponential and the spectrum is scale invariant, the 

ratio of tensor to scalar is very small. From the fact that inflation must be 

“superluminal” (m > l), we can use Eq. (9) to derive an approximate upper 

bound, T/S 5 20 [IS]. However, the COBE DMR [I] bound on the power- 

spectrum index n, n = 1.1 & 0.6, which implies that n 2 0.5 when T/S 2 1, 

leads to the stronger limit, T/S 5 3 ( an m 2 5). (Doubtless, there are yet d 

stronger bounds on n based upon structure formation). 

We can now apply these results for the specific models for which we 

found T/S 2 1, extended and chaotic inflation, In extended (or power-law) 

inflation, the power spectrum is tilted according to n. N (2w-9)/(2w- 1) and 

m = (2~ + 3)/4. Using the COBE DMR limit, n 2 0.5, we find a plausible 

range, 26 2 w 2 9. For chaotic inflation, R x 1 -- p/120 and m N 240/p, 

leading to a somewhat extreme range, 60 2 p 2 18. 

Tensor contributions have significant implications for CMB measurements. 

First, the COBE DMR results alone do not distinguish scalar from tensor con- 

tributions to the anisotropy; see Fig. 1. However, the COBE DMR results, 

combined with measurements on smaller-angular scales, might distinguish 

the two. The COBE DMR measurement implies (ai) = (4.53 zlc 2.5) x lo-“, 

where we should keep in mind that this is a measurement of (~~)~+(a$~. Go- 

ing to smaller-angular scales, the scalar contribution to the CMB anisotropy 

grows relative to the tensor, but the net contribution to small-angle messure- 

ments is diminished compared to no tensor mode at all; see Fig. 2. (We are 
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assuming that no late re-ionization washes out fluctuations on small-angular 

scales.) Hence, comparing large- and small-angle anisotropy measurements 

can, in principle, separate the scalar and tensor contributions. (Another 

possibility for separating the two is to measure the polarization of the CMB 

anisotropy as the tensor modes lead to a slight polarization [19].) 

The tensor mode can seriously affect the interpretation of CMB messure- 

ments for large-scale structure, regardless of the form of dark matter. As 

an example, the best fit cold dark-matter (CDM) model to the COBE DMR 

results assumingT/S < 1 has a bias factor b N 1. (The bias factor b E l/o*, 

where os is the rms mass fluctuation on the scale 8h-i Mpc.) If, however, 

the tensor contribution to the CMB quadrupole is significant, then the ex- 

trapolated density perturbation amplitude at 8/r-’ Mpc is reduced, and the 

best-fit CDM model has b > 1; see Fig. 2. Two related effects combine to 

increase b: the power spectrum is tilted (less power on small scales for fixed 

quadrupole anisotropy), and scalar perturbations only account for a fraction 

of the quadrupole anisotropy. We find, very roughly, 

b N 100(‘-“)~2,/~ N 10(=fS)17J1+TIS, 

where “100” is the ratio of the scale relevant to the quadrupole anisotropy, 

X N lOOOh-’ Mpc, to the scale 8h-’ Mpc. For T/S = 0.53,1.4,2.5, and 3.3, 

the bias factor b = 1.4,2.4,4.6, and 7.8 (and n = 0.92,0.78,0.59 and 0.44). 

While these numbers should only be taken as rough estimates, the trend is 

clear: larger T/S permits larger bias. 

In sum, if small-angular-scale measurements find AT/T significantly lower 

than that extrapolated from the COBE DMR quadrupole (see e.g., [ZO]), 

there are now at least two possible explanations consistent with inflation. 

Either re-ionization has washed out the small-angle fluctuations, or tensor 
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fluctuations contribute significantly to the COBE DMR observations. In the 

latter case, what can CMB studies tell us about inflation? Our analysis sug- 

gests a remarkable conclusion-COBE DMR combined with small-angular- 

scale measurements can directly relate the key cosmological parameters that 

govern large-scale structure, such as the bias factor b in CDM models and 

the power-spectrum index a, to the microphysical parameters that control 

inflation. 
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FIGURE CAPTIONS 

1. Temperature auto-correlation function (from the Sachs-Wolfe effect) for 

tensor and scalar modes each normalized to the COBE DMR quadrupole 

anisotropy using a scale-invariant spectrum and the COBE DMR window 

function [I]. CDM predictions (211 for the scalar contribution to C(0) are 

also shown. 

2. Constraints to the CMB anisotropy from various experiments (from [l]) 

and predictions for the South Pole anisotropy experiment on 1” for CDM 

models (0 = 1, 0~ = 0.1, h = 0.5), using the filter function from [22]: Open 

circle, CDM with b = 1, the best-fit CDM model to the COBE DMR if 

T/S < 1; Open triangle, CDM with b = 2, consistent with the COBE DMR 

only if T/S 2 1; Closed triangle, upper bound if COBE DMR were detecting 

pure tensor mode (T/S >> 1). 
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Figure 1. 



0 

0 

3; 

UiF 

al 

%I 

1 

3 
3 
cd 

2 

2 
u 


